
The ABL Keeps Getting Better

What’s New in the ABL – 11.4 & 11.5

Phillip Molly Malone

Principal Technical Support Engineer

@mollyfud

#APJSpark

Agenda

 11.4

• OOABL serialization

• FINALLY block

• GET-CLASS

• JSON Before-Image Support

• 64-bit WebClient

 11.5

• ABL widget enhancements

• Additional CAN-DO functionality

• Coexistent installation of 32-bit and 64-bit OpenEdge

11.4

Object Serialization – Motivation

Problem

• There is no standard way to get error information from the AppServer to

a client

• There is no way to pass OOABL objects between an ABL client and an

AppServer

Solution

Introduce built-in OOABL object serialization

• Works between an ABL client and an AppServer

– Not Open Client

Object Serialization in the ABL

 Use Cases

• Throwing an error object from the AppServer to an ABL client

• Passing an object between an ABL client and an AppServer

• Passing temp tables that contain ABL object fields between an ABL client

and an AppServer

 Rules for serialization and deserialization

 Futures Roadmap

ABL Client
Server

Throwing an Error Object – 11.4

RETURN ERROR New Progress.Lang.AppError(…).

ROUTINE-LEVEL ON ERROR UNDO, THROW.

CATCH err AS Progress.Lang.Error:

UNDO, THROW err.

END.

ABL Client
Server

Throwing an Error Object

Pre - 11.4

 Raises ERROR on client

 Object instance returned

 Error message and all other object

data available on the client

11.4

 Raises ERROR on client

 Generated warning in the AppServer

log file

 No object instance returned

 Not even error message available on

the client

What Objects Can You Throw?

 Classes which implement Progress.Lang.Error, for example,

• Progress.Lang.SysError

• Progress.Lang.AppError

• Progress.Lang.JsonError

• Progress.BPM.BPMError

• Any user-defined class that implements Progress.Lang.Error

– Typically subclass of Progress.Lang.AppError

– Must be marked SERIALIZABLE

 Not .NET Exceptions

Error Object – CallStack

 Error objects can contain Callstack information

• SESSION:ERROR-STACK-TRACE attribute to TRUE

• -errorstack startup parameter

 Callstack augmented with info from both client and AppServer call stacks

getCust.p at line 20 (c:\OO\getCust.p)

runit.p at line 2 (c:\OO\runit.p)

Server StackTrace:

serverCust.p at line 8 (./serverCust.p)

RUN serverCust.p ON

SERVER hSrvr.

Passing Objects between Client and
Appserver

Server ABL Client

OO ABL Serialization

 How objects get passed between a client and an AppServer

 What objects can be serialized?

 Compatibility between client & server

 Serialization rules

 Deserialization rules

ABL Client
Server

Passing OOABL Objects

 Parameters

 Return Values

RUN proc.p ON SERVER hsrv (INPUT myCustInfo).

DEFINE VAR myCustInfo AS CustInfo.

FUNCTION getData RETURNS CustInfo () IN hRemoteProc.

…

RUN CustServices.p ON SERVER hsrv SET hRemoteProc.

…

myCustInfo = getData().

Passing Remote Temp-tables Containing ABL Object Fields

 Restriction lifted

• Pass temp-table to AppServer if it contains an OOABL object

• Field is still defined as Progress.Lang.Object

 TT can contain object instance, which can contain TT…

ABL Client Server
tt1

plo1

plo2

SERIALIZABLE

 Indicates objects of the class can be passed between an AppServer and a

remote client

 Every class in hierarchy must be marked SERIALIZABLE

 Cannot be used with ABL-extended .NET classes

CLASS CustInfo INHERITS Info SERIALIZABLE:

 ...

END.

SERIALIZABLE – PDSOE

Serializable Built-in OOABL Objects

 Serializable

• Classes that implement Progress.Lang.Error

• Progress.Json.ObjectModel.JsonObject

• Progress.Json.ObjectModel.JsonArray

• Progress.Json.ObjectModel.ObjectModelParser

– Any built-in sub-class of any of these

• Progress.Lang.Object

 Not serializable – everything else, for example:

• Progress.Security.DB.Policy

• Progress.Database.TempTableInfo

• Progress.BPM.DataSlot

• Progress.Lang.Class

Update to Object Reflection

 IsSerializable method of Progress.Lang.Class

• Indicates whether the object is SERIALIZABLE

• Use at run-time or for tooling

DEFINE VAR cls AS Progress.Lang.Class

cls = Progress.Lang.Class:GetClass(“CustInfo”).

MESSAGE cls:IsSerializable() VIEW-AS ALERT-BOX.

Update to COMPILE XREF, COMPILE XREF-XML

<Class-ref>

 <Source-guid>t6BMga8eOYXVE8DcTJMLng</Source-guid>

 <Ref-seq>4</Ref-seq>

 <Inherited-list/>

 …

 <Is-final>true</Is-final>

 <Is-serializable>true</Is-serializable>

Version Compatibility

 Both sides must be at least 11.4

• 11.4 client -> older AppServer

– Parameter passing errors

• 11.4 AppServer -> older client

– OOABL error object not thrown

– Parameter passing errors

Version Compatibility – VersionInfo Class

Serialization Model

 Pass by value

• Receiving side creates new object instance

• Either instance may get garbage collected

ABL Client
Server

Compatibility: Class Definitions

 Class definitions on Client and

AppServer must be the “same”

• Method signature and data members must

match exactly

 What if they are different?

• An error is raised on the RUN statement

 AVM does not check if the business

logic matches

• Constructor, method or property getter/setter

code can be different

• API the same, r-code is different

Class A

Property A1

Variable A2

Class A

Property A1

Variable A2

=

What Gets Serialized?

 All instance data members are serialized
• Variables

• Properties

• ProDataSets

• Temp-tables

 All access modes
• Public, Protected, Private

 Static data members are NOT serialized

 Property getters
• Not invoked

• Value is copied

Serialization Rules – Special Cases

 MEMPTRs
• Serialize if allocated by the ABL application

• Not serialized if allocated from external sources

– DLL or shared library

– Set to Unknown when the object is deserialized

 Handle-based variables (e.g., widgets, queries, buffers)
• Serialized with the handle value

• Widget/object referenced by the handle is not serialized

• Only useful to round-trip data

 Cannot serialize .NET or ABL-extended .NET objects
• AVM raises an error

Serialization Rules – State

 The AVM does not maintain state of class instance

• Open queries/cursor position

• Buffer contents

• Open files

• Streams

• Event subscriptions

Serialization Rules – Object Relationships

 Deep-copy

• Serialize data member object references

• Object graph is serialized

• Only 1 instance of Class D is serialized

Class A

Property myB

Property myC

Class B

Variable myD

Class C

Property myD

Class D

Temp-Tables and Object Fields

 Multiple references to one instance

• Instance uniqueness is maintained

• Only 1 instance of Class A is serialized

plo1

plo1

Class A

Circular References

 Circular references are detected and OK

• No infinite loop

Class B Class A

Class C

Deserialization Rules

 Creating the new instance

• Instance Constructor not invoked

• Property Setters not invoked

 Only the object’s data is deserialized

• R-code must already exist on both sides of

the wire

DynObjects Logging

 DynObjects logging includes objects created by deserialization

 Use LOG-ENTRY-TYPES: DynObjects.Class

[14/07/21@13:56:26.322-0400] P-008364 T-009896 3 AS DYNOBJECTS Created

 Progress.Lang.Object Handle:1000 (objParm.p @ 0) classA

RUN objParm.p ON hServer (INPUT NEW classA()).

Serialization of Character Data

 Character data serialized via sender’s –cpinternal

 Character data deserialized via receiver’s –cpinternal

 Longchar same rules apply except if:

• Codepage fixed with FIX-CODEPAGE

 Runtime error can be raised during conversion

ABL Client
Server

Character –cpinternal Character –cpinternal

Object Serialization – On the Roadmap

 Transient data (do not serialize)

 Provide object serialization to disk

• Binary format

• JSON

• XML

 Provide options to support “relaxed” levels of client/server matching:

• Exact match for public and protected members only

• Match by data members name & type

 Application defined (via callback)

DEFINE PUBLIC VARIABLE x AS INT.

DEFINE PUBLIC VARIABLE y AS INT.

DEFINE PUBLIC VARIABLE z AS INT.

DEFINE PUBLIC VARIABLE y AS INT.

DEFINE PUBLIC VARIABLE x AS INT.

DEFINE PUBLIC VARIABLE w AS INT.

Agenda

 OOABL serialization

 FINALLY block

 GET-CLASS

 JSON Before-Image Support

 64-bit WebClient

FINALLY Block – Motivation

Problem

Flow-of-control statements in a FINALLY block may conflict with associated block

Solution

We changed how the AVM handles flow-of-control statements in a FINALLY block

DO TRANSACTION:

 UNDO THROW myAppError.

END.

FINALLY:

 RETURN.

END.

FINALLY Block

 2nd line is new behavior in 11.4

 Best Practice: Avoid flow-of-control conflicts between

Associated block and FINALLY block

Associated Block

FINALLY block

Caller

Return 1

Return 2

2

Error 1 RETURN, NEXT, LEAVE, RETRY

Error 1

Agenda

 OOABL serialization

 FINALLY block

 GET-CLASS

 JSON Before-Image Support

 64-bit WebClient

GET-CLASS – Motivation

Problem – Prior to 11.4

• ABL supports Progress.Lang.Class:GetClass(<type-name-exp>)

• This does not provide compile time validation of type-name-exp

Solution

• Introduce GET-CLASS built-in function

• Accepts a type-name parameter

– not a character expression

GET-CLASS

 Syntax

 Returns a Progress.Lang.Class

 USING statements are applied to a non-qualified name

 Compiler error if not found

GET-CLASS(<type-name>).

Agenda

 OOABL serialization

 FINALLY block

 GET-CLASS

 JSON Before-Image Support

 64-bit WebClient

JSON – Before-Image – Motivation

Problem

• Lack of serialize / deserialize for a ProDataSet with before-image data to

JSON

• Out of step with XML support

• Mobile

Solution

• Optional before-image data in JSON for ProDataSets

JSON – Before-Image – Motivation

 You cannot reliably save ProDataSet changes to the DB w/o a before-

image

• You cannot know if another user has changed the data first.

 Mobile

• Original version – “built-in” method for update only handled 1 record at a

time.

– Application would have to do its own before-image caching and checking

• In 11.4 – Added ability to return a set of records in a ProDataSet.

– Requires reliable SAVE-ROW-CHANGES – need Before-image Information

 Offline support

• Make updates to a ProDataSet; Save to JSON since DB is unavailable

• Read back later when connected and do SAVE-ROW-CHANGES

JSON – Before-Image Syntax

 Syntax:

 Example:

 No change to READ-JSON syntax

WRITE-JSON (target-type , { file | stream | stream-handle | memptr | longchar }

 [, formatted [, encoding [, omit-initial-values

 [, omit-outer-object [, write-before-image]]]]])

DEFINE VARIABLE writeBI AS LOGICAL INIT YES.

DATASET dset:WRITE-JSON (“File”, “test.json”, YES, "UTF-8“, YES,

 NO, YES).

ProDataSet – JSON Output

After table (current state)

{"dsCustomer": {

 "prods:hasChanges": true,

 "ttCust": [

 {

 "prods:id": "ttCust10497",

 "prods:rowState": "modified",

 "CustNum": 2,

 "NAME": "Urpon Frisbee_NewName",

 "Balance": 903.64

 },

Before table

"prods:before": {

 "ttCust": [

 {

 "prods:id": "ttCust10497",

 "prods:rowState": "modified",

 "CustNum": 2,

 "NAME": "Urpon Frisbee",

 "Balance": 437.63

 },

Record marked as

“modified”

 …

 "prods:before": {

 "ttCust": [

 {

 "prods:id": "ttCust10520",

 "prods:rowState": "deleted",

 "prods:hasErrors": true,

 "CustNum": 3,

 "NAME": "Hoops",

 "Balance": 1199.95

 },

 …

 "prods:errors": {

 "ttCust": [

 {

 "prods:id": "ttCust10520",

 "prods:error" : "error-string“

 }, …

ProDataSet – Before Table May Also Indicate Row Error

Error associated with

this row

If row not deleted,

hasErrors would be

in after table instead

Agenda

 OOABL serialization

 FINALLY block

 GET-CLASS

 JSON Before-Image Support

 64-bit WebClient

WebClient – Windows 64-bit

Problem – Since 11.3

• Provided a 64-bit GUI client

• Missing functionality – no support for 64-bit WebClient

Solution

WebClient application can be defined as supporting

– 32-bit platform

– 64-bit platform

– Either, depending on target machine

WebClient – Windows 64-bit

 When your application gets deployed

• WebClient (i.e., the Progress AVM) is installed if not already there

• The app gets installed

– In general ABL code is not impacted by 32-bit vs. 64-bit

– If it is, it can/should be conditionalized to support both versions

– But the install is targeted for either 32-bit or 64-bit

o Notably – we need to know which AVM to run

 We support both 32-bit and 64-bit WebClient on the same machine

• 2 different applications, one 32-bit, one 64-bit

• Do NOT support this for the GUI client in 11.4

WebClient Application Assembler – General Tab

 On General tab, added
• Platform toggles

– 32-bit

– 64-bit

• Pick one or the other

• Pick both:

– Install will match the machine

configuration

 Will end up with 32-bit and 64-bit

AVM if:

• 64-bit machine

• Another 32-bit app already

installed

• Your app is installed as 64-bit

WebClient Application Assembler – Application Upgrade

 When you select both 32-bit &

64-bit

 You, the developer, decide the

upgrade path:

 • Continue to run the application as

32-bit

• Uninstall 32-bit version and install

64-bit version

• Ask the end-user: keep 32-bit or

upgrade to 64-bit

11.5

ABL widget enhancements

 Two new browse events

• SCROLL-VERTICAL

• SCROLL-HORIZONTAL

• SCROLL-NOTIFY

 New CLEAR() method for individual Fill-ins

• Works on individual fill-ins rather then all in a frame as CLEAR statement did

 -nocolon startup parameter suppress the appending of colons to static side labels

Additional CAN-DO functionality

 As part of OpenEdge's implementation of multi-tenancy, the CAN-DO function treats "@" as

the domain name delimiter in a fully qualified user ID by default and this was preventing

people from using the "@" symbol as a regular character

 This release provides two ways to treat the "@" symbol as a regular character

1. Use -nocandodomain startup parameter

2. Set CAN-DO-DOMAIN-SUPPORT attribute on the SECURITY-POLICY handle to FALSE

 For Example:

• When -nocandodomain is not in effect, the statement CAN-DO("abc","abc@") evaluates to TRUE

because both strings are interpreted as user abc in the blank domain

• When -nocandodomain is in effect, the statement CAN-DO("abc","abc@") evaluates to FALSE

Coexistent installation of 32-bit and 64-bit OpenEdge

 Start menus - Coexistent install

 Services - Coexistent Admin Servers only auto starts first Admin Server installed

 Control Panels > All Control Panels > Programs and Features - Coexistent listing

Sample ABL on same machine

32-bit - blue font 64-bit - black font

Your Feedback Matters

2 Winners get a GoPro Hero 4
Camera worth USD 399 each!

#APJSPARK

2 Winners get a Microsoft Band
worth USD 199 each!

Take 10 surveys and stand a
chance in the lucky draw!

bit.do/apjspark

Take 10 Surveys Best Tweets

