
Table Partitioning

Application and Design

Richard Banville

OpenEdge Development

Progress Software

2 © 2015 Progress Software Corporation. All rights reserved.

Agenda

 Table Partitioning in OpenEdge

 Partition design considerations

• Partition definition setup, not physical layout

 Application Impact

• Transparent to application development (for the most part!)

• Rowid usage

• Record operational impact

 New locking construct interactions

3 © 2015 Progress Software Corporation. All rights reserved.

Data Access: List Partitioning

 List Partition

• Partition based on a single / unique value

• Data value == partition definition storage location

• Must be fully qualified; No “catch all” partition

• May want to create a “default” partition based on initial value

• “Other” Region

• No partitioning on UNKNOWN value

 FIND Order WHERE region = Western.

Northern Region

Western Region

Southern Region

Order Table

List

Partitioning

4 © 2015 Progress Software Corporation. All rights reserved.

Data Access: Range Partitioning

List

Partitioning

Range

Partitioning

 Range partition

• Partition contains values LE specified range

• No “high-range” value

• Could just use 99/99/9999 for a date range

• Use split utility to segregate data

• Range can be any “indexable” datatype

• No partitioning on UNKNOWN value

 FOR EACH Order WHERE

 Order-Date <= 12/012/2013. OR

Northern Region

Western Region

Southern Region

Order Table Order Table

 12/31/2011

 12/31/2013

 12/31/2015

5 © 2015 Progress Software Corporation. All rights reserved.

Data Access: Sub-partitioning

Sub-partitioning OR

Northern Region

Western Region

Southern Region

Order Table Order Table

12/31/2011

Western Region

12/31/2013

Western Region

12/31/2015

Western Region

12/31/2011

Southern Region

12/31/2013

Southern Region

12/31/2015

Southern Region

12/31/2013

Northern Region

12/31/2015

Northern Region

12/31/2011

Northern Region

List

Partitioning

Range

Partitioning
OR

Order Table

 12/31/2011

 12/31/2013

 12/31/2015

6 © 2015 Progress Software Corporation. All rights reserved.

Partitioned Tables:
Design Considerations

7 © 2015 Progress Software Corporation. All rights reserved.

Why Are You Partitioning?

Maintenance

 Data re-org / rebuild

 Data purging

 Data archival

Availability

 Data repair

 Data isolation

 Historic data access

Performance

 “Hot” table

 “Hot” index access

8 © 2015 Progress Software Corporation. All rights reserved.

 Create order where Order-date = TODAY AND

 Sales-Rep = mySalesRep.

Increasing Concurrency With Table Partitioning

A7 A8 A9

Table data across physical storage areas

Partition 1 Partition 2 Partition 3

User #4 User #3 User #2 User #1

A7 A8 A9

Table data across physical storage areas

Partition 1 Partition 2 Partition 3

User #4 User #3 User #2 User #1

Pick me

A7

Range Partitioning

by Order-Date

Sub-partitioning

by Sales-rep & Order-Date

9 © 2015 Progress Software Corporation. All rights reserved.

 Create order where Order-date = TODAY AND

 Sales-Rep = mySalesRep.

Increasing Availability With Table Partitioning

A7 A8 A9

Table data across physical storage areas

Partition 1 Partition 2 Partition 3

User #4 User #3 User #2 User #1

A7 A8 A9

Table data across physical storage areas

Partition 1 Partition 2 Partition 3

User #4 User #3 User #2 User #1

Pick me

Range Partitioning

by Order-Date

Sub-partitioning

by Sales-rep & Order-Date

10 © 2015 Progress Software Corporation. All rights reserved.

What to Partition

 Get it right the first time

• Splitting / Merging partitions is straightforward

• Repartitioning existing definitions requires a dump and load

 Data organization

• Look for grouping of data “by data value”

• Organized by sequential data range?

– Range partitioning

– Range rather than single value to identify a group of data

– Date (most typical), product code, alphabetic range

• Organized geographically or grouped by specific “static” entities

– List partitioning

– Country, region, company, division

11 © 2015 Progress Software Corporation. All rights reserved.

Consider Data Access Patterns

Range partitions

 By “year” is a typical approach for tables with date field

• Order-date vs Shipped-date

 Sub-partitioning candidate?

• Can you include another column (or add one)?

 Determine appropriate date range

• Maintain / access data

– Activity patterns: Purge, archive, reorganize, relocate

– Calendar year, fiscal year, quarter?

 Determine product code or alphabet range grouping

• Affect on high-availability, archival, etc.

• Load balance groups of data, not just modulus

12 © 2015 Progress Software Corporation. All rights reserved.

Consider Data Access Patterns

List partitions

 By geographic region or division are typical approaches

• Why or why not Sales-Rep?

 Sub-partitioning candidate?

• Can you include another column (or add one)?

• By country-code by region

 Consider number of unique data values

• 32,765 max defined partitions per table

13 © 2015 Progress Software Corporation. All rights reserved.

Consider Join Activity

 How is the data typically accessed?

• Customers have orders

• Orders refer back to customers by cust-num

 I want to organize customers by region, orders by date (year)?

• What should my partitioning scheme be?

 Should I de-normalize

• Customers by region

• Orders by region and year?

 Should I just rely on global indexes for the child join?

 Should I add a global index on year and join using local index?

Decisions are based on YOUR data access patterns

14 © 2015 Progress Software Corporation. All rights reserved.

Partitioned Tables:
Application Development
Considerations

15 © 2015 Progress Software Corporation. All rights reserved.

Record Creation: Some “Gotchas”

 Requires partition fields be filled out

• UNKNOWN values not allowed in partition columns

• Use mandatory fields

• Use appropriate initial values

– Changing assigned initial value may adversely affect performance

 When is a record actually created?

• RELEASE or VALIDATE

• Buffer out of scope / reuse (txn end, new record)

• LOB assignment

• Assign a field of a unique index

16 © 2015 Progress Software Corporation. All rights reserved.

Attempt to create/set a value for a data partition column in

partitioned table Order where the value is not in one of the

defined partitions. (17094)

Record update

Record Creation: Range Partitioning

Range partitioning by Order-date

 CREATE Order.

 ASSIGN Cust-num = Customer.cust-num

 Order-Num = NEXT-VALUE(Ord-Seq).

…
 ASSIGN Order-date = TODAY.

Record creation

Initial record creation will fail

Either:

 - Move Order-date assignment

 - Make TODAY initial value

17 © 2015 Progress Software Corporation. All rights reserved.

Record update

Record Creation: List Partitioning

List partitioning by Country

 CREATE Customer.

 ASSIGN Cust-num = NEXT-VALUE(Cust-Seq)

 name = “Ritchid”.

…
 ASSIGN Country = “Finland”.

Record creation

Initial record creation will fail

Either:

 - Move Country assignment

 - Have valid initial value “Other”

 - Re-assignment causes delete/insert

Attempt to create/set a value for a data partition column in

partitioned table Customer where the value is not in one of

the defined partitions. (17094)

18 © 2015 Progress Software Corporation. All rights reserved.

Rowid and Data Location

Recid

 Unique per area

 NOT unique per partitioned table

 Integer

 Range comparisons (<, >, =)

Rowid

 Unique per area

 Unique per partitioned table

 Raw storage (convert to string for display)

 Variable length of bytes

 Equality comparisons

 Format subject to change

 Version Recid Rowid

 11.3: 1951 0x000000000000079f Table 2, row # 1951

 11.4: 1951 0x000000000000079f0000 Table 2, row # 1951, Partition 0 (implied)

 11.4: 1951 0x000000000000079f0002 Table 2, row # 1951, Partition 2

Display recid(Order) string(rowid(Order)).

19 © 2015 Progress Software Corporation. All rights reserved.

Rowids and Data Location Mapping

A7 A8 A9 A10

Table data now across physical storage areas

Partition 1 Partition 2 Partition 3 Partition 4

Table #

 +

ROWID

Area # and

Record data

Object

Mapping

 Table # + Row # => record data

 Table # + Partition => Area

 Replace recid with rowid

throughout your code

FIND Cust where rowid(Cust) = myRowid.

20 © 2015 Progress Software Corporation. All rights reserved.

Rowids and Data Location Mapping

A7 A8 A9 A10

Table data now across physical storage areas

Partition 1 Partition 2 Partition 3 Partition 4

Table #

 +

Partition ID

Table #

 +

ROWID

Area # Area # and

Record data

Table #

 +

Column Data

Object

Mapping

Partition

Detail

 Table # + Row # => record data

 Table # + Partition => Area

 Replace recid with rowid

throughout your code

FIND Cust where rowid(Cust) = myRowid. Create Cust. Assign country = “Austria”.

21 © 2015 Progress Software Corporation. All rights reserved.

Displaying Partition Information

 Partition Ids are NOT needed in your code

 However we’ve provided access to partition information via the ABL & SQL:

• Retrieving the partition Id (ABL Example)

– Built-in function: BUFFER-PARTITION-ID (buffer-name)

– BUFFER-PARTITION-ID attribute

• IS-PARTITIONED attribute

 FIND FIRST Order NO-LOCK.

 MESSAGE

 “Partition (Attribute):” BUFFER-PARTITION-ID:getByRowid(ROWID(Order))

 “Partition (Attribute):” BUFFER-PARTITION-ID:getByHdl(BUFFER Order:HANDLE)

 “Partition (Function):” BUFFER-PARTITION-ID (Order)

 “Is-Partitioned?" BUFFER Order:IS-PARTITIONED.

22 © 2015 Progress Software Corporation. All rights reserved.

Where’s my row?

 Find first order NO-LOCK.

 Find _File where _File-name = "Order" NO-LOCK.

 Find _StorageObject where

 _Object-Number = _File-num AND

 _PartitionId = BUFFER-PARTITION-ID(Order) AND

 _Object-Type = 1 NO-LOCK.

 Find _Area of _StorageObject NO-LOCK.

 Find _Partition-policy-detail where

 _Partition-policy-detail._Object-Number = _File-num AND

 _Partition-policy-detail._Partition-Id = BUFFER-PARTITION-ID(Order).

 Display _Area-name _File-name _Partition-name string(rowid(Order)) format ”x(24)”.

1

2

3

Table number + Partition Id => Area location

23 © 2015 Progress Software Corporation. All rights reserved.

Dumping Data by Recid

 Disaster recovery scenario

 All alternative approaches are not possible

• No DR, no AI, no backup, no job

 This will not work for partitioned tables

 DO myRecid = 1 to maxId:

 FIND Order where recid(Order) = myRecid NO-LOCK NO-ERROR.

 IF AVAILABLE Order then

 EXPORT Order.

 END.

24 © 2015 Progress Software Corporation. All rights reserved.

USING OpenEdge.DataAdmin.Util.RowidGenerator.

METHOD PUBLIC STATIC VOID TableStart

 (tableName AS CHAR,

 startId AS INT64, /* Starting record # */

 maxId AS INT64, /* Ending record # */

 partitionId AS INT)

METHOD PUBLIC STATIC ROWID GetNextRowid()

Dumping Partitioned Data Using Rowids

 New RowidGenerator class with 2 static methods

• Useful for disaster recovery scenario when alternative approaches are not possible

 Specify partitionId of “?” to indicate ALL partitions

 Ensure maxId is large enough!

25 © 2015 Progress Software Corporation. All rights reserved.

Dumping Partitioned Data Using Rowids

 USING OpenEdge.DataAdmin.Util.RowidGenerator.

 DEFINE VAR myRowid AS ROWID.

 /* Scan all order partitions */

 RowidGenerator:TableStart("Order", 1, 9999999, ?). Scan ALL partitions

 myRowid = RowidGenerator:GetNextRowid().

 DO WHILE myRowid <> ?:

 FIND Order where rowid(order) = myRowid NO-LOCK NO-ERROR.

 IF AVAILABLE(Order) THEN DO:

 EXPORT Order.

 END.

 myRowid = RowidGenerator:GetNextRowid().

 END.

26 © 2015 Progress Software Corporation. All rights reserved.

Record Update Affect: Can Now Change rowid

 Prefetch / scrolling queries:

• REPOSITION-TO-ROW

– Behaves as if record was deleted *

– Must reopen query to revalidate

• Current session makes the change

– The result set is automatically fixed up

– GET/FINDs will continue to work

• Different session makes the change

– CURRENT-CHANGED will return TRUE

– GET/FINDs will behave as if the record were deleted *

o Even if the record still satisfies the query!

o Must reopen query to revalidate

* Indicates change in behavior

27 © 2015 Progress Software Corporation. All rights reserved.

Record Update: Can Now Change rowid

 DEFINE QUERY q1 FOR Customer SCROLLING.

QUERY q1:HANDLE:SKIP-DELETED-RECORD = NO.

OPEN QUERY q1 FOR EACH Customer.

GET FIRST q1.

GET NEXT q1.

 /***** Another session changes partitioned field country */

GET FIRST q1. /***** GET ERROR if explicitly NOT skipping deleted records */

GET NEXT q1.

** No Customer record is available. (91)

28 © 2015 Progress Software Corporation. All rights reserved.

Record Update: Can Now Change rowid

 DEFINE QUERY q1 FOR Customer SCROLLING.

 /***** Following set to YES (default) will avoid the runtime error */

QUERY q1:HANDLE:SKIP-DELETED-RECORD = YES.

OPEN QUERY q1 FOR EACH Customer.

GET FIRST q1.

GET NEXT q1.

 /***** Another user changes partitioned field country */

GET FIRST q1. /***** Changed record is skipped */

GET NEXT q1.

NOTE: This is the default behavior when

 SKIP-DELETED-RECORD is not specified.

30 © 2015 Progress Software Corporation. All rights reserved.

Data Access Restrictions

 No pre-OpenEdge 11.4 client access to partition enabled database

• Not single user, self service nor remote access

 Post OpenEdge 11.0: r-code compatible

 Shared schema access (online)

• Adding new partitioned tables

• Adding new partitions to existing tables

• Partition maintenance

 Exclusive schema access (ugh!)

• Marking existing table partitioned

 Reverting:

• Must remove all partitioned tables, partition definitions and disable partitioning

• Dump, reconfigure, load, disable

31 © 2015 Progress Software Corporation. All rights reserved.

Data Access Restrictions

 Cancelled or in progress split/merge operation

• Data being moved is “generally” inaccessible

• Inserts to the transitioning partition are also prevented

• NOTE: This is a STOP condition

– use ON-STOP vs ON-ERROR

12/31/2012

12/31/2014

Order Table

12/31/2013

FOR EACH Order NO-LOCK by Order-date:

 DISPLAY Cust-num Order-num Order-date.

 A partition of table “Order„”cannot be accessed pending

completion of database utility operation (17604)

Range

Partitioning

32 © 2015 Progress Software Corporation. All rights reserved.

Data Access Restrictions

 In progress or cancelled split/merge operation

• Data being moved is “generally” inaccessible

• Partition data NOT in transition is fully accessible

12/31/2012

12/31/2014

Order Table

12/31/2013

FOR EACH Order NO-LOCK where order-date >= 2014:

 DISPLAY Cust-num Order-num Order-date.

Cust-Num Order-Num Order-Date

1 6 01/05/2014

1 36 01/19/2014

… … …

Range

Partitioning

33 © 2015 Progress Software Corporation. All rights reserved.

Data Access Restrictions

 In progress or cancelled split/merge operation

• Data being moved is “generally” inaccessible

• Global vs local index support

12/31/2012

12/31/2014

Order Table

12/31/2013

FOR EACH Order NO-LOCK by Cust-num:

 DISPLAY Cust-num Order-num Order-date.

Cust-Num Order-Num Order-Date

1 6 09/25/2013

1 36 01/19/2014

… … …

• Access via global index is allowed

– Global index always knows where the data is

• Updates to transitioning partition always disallowed

Range

Partitioning

34 © 2015 Progress Software Corporation. All rights reserved.

Exception Handling

 Some more stop conditions:

• No partition definition exists

• Field assignment to Offline/ unallocated partition

 Exception conditions

• “Lookup” type failures are ERROR conditions

• “Assignment” type failures are generally STOP conditions

 Attempt to create/set a value for a data partition column in partitioned table

“Customer“ where the value is not in one of the defined partitions. (17094)

 Attempt to create in partitioned table “Customer’”

where the partition has not been allocated (17698)

35 © 2015 Progress Software Corporation. All rights reserved.

New Schema:

Column Name Type

2 _Object-Number integer

3 _Partition-Id integer

4 _Partition-Name character

5 _Partition-Column-Value character[16]

6 _Partition-Internal-Value raw

7 _Attributes Logical[64]

[1] = 1 space allocated

[2] = 1 this is a sub-partition

[3] = 1 lowest level sub-partition

[4-63] unused

8 _Description character

9 _ianum-Data Integer

10 _ianum-Index Integer

11 _ianum-Lob integer

12 _Misc character[16]

proutil <db> -C enabletablepartitioning

 _Partition-Policy-Detail (-353)

• Defines each individual partition

• Lookup requires Table # AND PartitionId

 _Partition-Policy (-352)

• Describes partition at the “table” level

• Lookup requires Table #

Useful for self-provisioning partitions

Column Name Type

2 _Partition-Policy-Name char

3 _Object-Number Integer

4 _DataArea-default Integer

5 _IndexArea-default Integer

6 _LobArea-default Integer

7 _Allocation-default

(None, immediate,

delayed)

Char

8 _Num-Columns Integer

9 _Column-Name char16]

10 _Has-Range Logical

11 _Description char

12 _Misc char[16]

36 © 2015 Progress Software Corporation. All rights reserved.

Programmatic Partition Definition Support

 ABL API support is also provided

 Used by OpenEdge Explorer and OpenEdge Management

 OpenEdge SQL provides DDL support

define variable policy as IPartitionPolicy no-undo.

define variable detail as IPartitionPolicyDetail no-undo.

policy = Service:NewPartitionPolicy("OrderDate")

 policy:DefaultAllocation = "Immediate"

 policy:Table = tbl…

 detail = Service:NewPartitionPolicyDetail("OldData")

 detail:SetValue(12/31/2012)…

 policy:Detail:Add(detail).

Associate table

w/partitioning

Define partitions

for table

37 © 2015 Progress Software Corporation. All rights reserved.

Summary

• Must consider record creation and changing rowids

• Partition information accessible but not needed

Transparent to application development (for the most part!)

• Potential for new ERROR / STOP conditions

• Improves availability and maintenance scope

Online partition maintenance affects

• Lots of things to think about

• Getting it right the first time is the goal

Partitioning design scheme is important

39 © 2015 Progress Software Corporation. All rights reserved.

Want To Learn More About Openedge 11?

 Role-based learning paths are available for OpenEdge 11

 Each course is available as Instructor-led training or eLearning

 Instructor-led training:

• $500 per student per day

• https://www.progress.com/support-and-services/education/instructor-led-training

 eLearning:

• Via the Progress Education Community (https://wbt.progress.com):

• OpenEdge Developer Catalog: $1500 per user per year

• OpenEdge Administrator Catalog: $900 per user per year

 User Assistance videos:

• https://www.progress.com/products/pacific/help/openedge

https://www.progress.com/support-and-services/education/instructor-led-training
https://www.progress.com/support-and-services/education/instructor-led-training
https://www.progress.com/support-and-services/education/instructor-led-training
https://www.progress.com/support-and-services/education/instructor-led-training
https://www.progress.com/support-and-services/education/instructor-led-training
https://www.progress.com/support-and-services/education/instructor-led-training
https://www.progress.com/support-and-services/education/instructor-led-training
https://www.progress.com/support-and-services/education/instructor-led-training
https://www.progress.com/support-and-services/education/instructor-led-training
https://wbt.progress.com/
https://www.progress.com/products/pacific/help/openedge

40 © 2015 Progress Software Corporation. All rights reserved.

New Course: Implementing Progress OpenEdge Table Partitioning

 Description: This course teaches the key tasks to partition tables in an OpenEdge RDBMS

database. First, you will be introduced to the concepts, types, and tasks of OpenEdge table

partitioning. Then, you will learn how to prepare for table partitioning and enable partitioning for a

database. Next, you will learn how to create new partitioned tables and partition existing non-

partitioned tables. Finally, you will learn how to manage partitions, maintain indexes, and gather

statistics for partitioned tables and indexes.

 Course duration: Equivalent to 2 days of instructor-led training

 Audience: Database Administrators who want to partition Progress OpenEdge RDBMS tables

 Version compatibility: This course is compatible with OpenEdge 11.4.

 After taking this course, you should be able to:

• Describe Progress OpenEdge table partitioning.

• Create new partitioned tables

• Partition existing tables

• Manage partitions

• Maintain indexes

• Gathering statistics for partitioned tables

and indexes

