

Agility through Business Rules

Management

P a g e | 2

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Contents

Introduction
This document outlines the exercises that you will complete as part of the workshop. It guides you step

by step through building a simple Corticon decision service and integrating this with an OpenEdge

application. No previous knowledge of Corticon is required. However, a basic understanding of

OpenEdge ABL, Temp-Tables and DataSets is advisable.

A basic OpenEdge application is provided as a starting point. The end product of the workshop will be

decision logic deployed and running in the Corticon Server and integrated with the OpenEdge

application.

Use Case
During this workshop you’ll be asked to create a decision service and integrate this service with your

backend OpenEdge application. You are working for an IT department of a large Insurance company.

This company is modernizing its IT infrastructure by externalizing as much as possible all business logic in

a services layer. This promotes speed of development, ease of maintenance, reuse of the

same services across other applications (such as the web site), traceability and quality of

the logic. The decision service we are going to work on is a service that assesses the risk

of someone applying for a new insurance policy. Usually “risk” translates to higher or

lower premiums to be paid for insurance coverage. Later we’ll extend the service to

encompass other elements.

P a g e | 3

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Setting up your environment - Getting started with Progress Arcade
We will use a Progress Arcade virtual image in the Cloud with all Progress software required already

installed for you to complete the workshop exercises.

WHAT IS PROGRESS ARCADE?

Progress® Arcade™ is a web portal where you can deploy and manage Progress applications in a Cloud-

based environment. You can use Arcade to migrate existing Progress applications to a public Cloud

environment, run and test the application in the Cloud, and then deploy the application. Deployment

includes the ability to host demos or to publish applications that are available to subscribers.

Progress Arcade is also a site where you can interact with other Arcade users, and find out about

services offered by various Progress Technology Partners.

HOW DO I ACCESS THE FEATURES OF PROGRESS ARCADE?

The features of Progress Arcade are grouped into functional areas, represented by six panels on the

Arcade home page. The panels include:

 Stage & Test – Gain experience in running your application in the public cloud.

 Deploy - Deploy your application into full production for customer use directly from the public

cloud (not currently available).

 Demo – Publish your application for demonstration purposes using the public cloud.

 Expo – Search for information on complementary products and services offered by the Progress

community.

 Community Café – Access Progress product resources and network with others in the Progress

community.

 Product Showroom – Learn about the features and benefits of Progress products. Specify what

technology you are interested in, and within minutes get a public cloud-based machine

dedicated to your exclusive use.

P a g e | 4

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

LAUNCHING YOUR OE CORTICON DEMO MACHINE ON PROGRESS ARCADE

To launch your OpenEdge Corticon Demo machine:

1. Several machines have been started for this workshop. Each of you will be given a unique DNS

address by the workshop host (see PowerPoint slide on how to do this) at this point which

points to a virtual windows server running on Progress Arcade.

2. On your laptop, choose Start| Accessories| Remote Desktop

Connection and paste your unique DNS into the Computer field.

Click the Connect button.

You may need to click the button left of Options to change (erase)

the domain name.

3. Enter Administrator as the Username, and ApjPug2015 as the

Password.

4. Click the Yes button to say you trust this remote connection.

5. You should now be connected to the demonstration machine running in Progress Arcade.

Note: The machine instance may have a different keyboard setting than what you are using. If your

laptop has a different keyboard, you may need to set this up yourself on the machine instance through

Control Panel| Region and Language settings.

P a g e | 5

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Exercise 1 – Model Corticon

Decision
A Corticon decision model is comprised of a

Vocabulary (data model), and sets of Rules against

that model. The Vocabulary can be built from

scratch inside OpenEdge Developer Studio

(Corticon perspective), but it can also be generated

from existing artifacts. OpenEdge provides the

ability to create a Corticon Vocabulary from

existing data structures like Temp-Tables and Pro

DataSets. In this exercise we will create the Vocabulary from a Temp-Table within the provided

application. Once we have the Vocabulary, we will model the business rules and use the analysis tools in

OpenEdge Developer Studio to ensure accuracy and completeness. If there are any defects, we will

resolve them. Finally we will use test data to execute the rules, and see the outcome of a given decision.

When we are satisfied with the decision model, we will use the publish wizard to deploy the service to

the Corticon Server running under the Tomcat application server which is part of OpenEdge Developer

Studio.

The Corticon Server (axis.war) is bundled with Corticon Studio (installed on this image including the

Corticon Eclipse plugin into OpenEdge Developer Studio. It was added explicitly to enable OE developers

to only need Corticon Studio for the developing and testing of OE/Corticon applications. This will make

the decision available as a callable service from any application via SOAP, as well as through the built in

Corticon integration with OpenEdge.

Figure 1: Corticon Designer Perspective

P a g e | 6

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Step 1 – Create Vocabulary

Launch Progress Developer Studio for OpenEdge from the desktop. If you are prompted to select a

Workspace, you should use the following location C:\OpenEdge\workspace. You will see the “Corticon

Business Rules”, please click on the “+” and open the project. Double click Underwriting.i to reveal the

contents of a pre-defined temp-table (Figure 2).

Figure 2

P a g e | 7

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Right mouse click on Underwriting.i and select Export/Business Rules Vocabulary Definition (Figure 3).

Figure 3

P a g e | 8

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

This will launch the export wizard where you can specify to temp-tables and datasets you wish to export,

as well as the location of the exported file (Figure 4).

You should choose the Applicant Temp-Table for export. You can choose any location and name for the

export definition file. Be sure to remember your choices, as you will use this file to import into

OpenEdge Developer Studio in a later step.

Figure 4

P a g e | 9

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Close the Underwriting.i file & Right mouse click on the “Risk Rating Rules” project (Figure 5).

Figure 5

P a g e | 10

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Right mouse click on the and select Import (Figure 6). This will launch the import wizard.

Figure 6

From here you should choose “Business Rule Vocabulary Definition” (Figure 7).

Figure 7

P a g e | 11

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Next you should select the file that you exported in the previous steps (Figure 8).

Figure 8

And finally you will specify the name and location in the Corticon project for the imported vocabulary

file. You should choose the Vocabulary folder, and name the file Underwriting (Figure 9).

Figure 9

P a g e | 12

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

You should now see Underwriting.ecore in the project explorer (Figure 10).

Figure 10

Now you have an Underwriting.ecore file. In the right pane, the generated vocabulary will be displayed.

Mind the little “locks”. This means that the Corticon vocabulary can only be changed when the Temp

table definition is changed. To Ensure this stays in sync, you use the the Import wizard and select the RE-

import feature.

P a g e | 13

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Step 2 – Model Business Rules in Rulesheet Editor

To create a new Rulesheet, right mouse click on the project and select New/Rulesheet (Figure 11).

Choose the “Rulesheet” folder and name it RiskRating (Figure 11 & 12).

Figure 11 Figure 12

You are then prompted to specify the Vocabulary you want to use for this Rulesheet. Select the

Underwriting.ecore file that you previously created (Figure 13).

Figure 13

P a g e | 14

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

You are now presented with a blank Rulesheet, ready to use for modeling our rules (Figure 14).

Figure 14

P a g e | 15

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

To model the rules, first type in the Business Rule Statements (Figure 15) in the Text field.

Row 1 - Applicants who skydive are a HIGH RISK rating

Row 2 – Applicants under 35 are a LOW RISK rating

Then assign the conditions and actions that make up the two rules in this example. For the first rule,

drag the “isSkydiver” attribute over into the first row of the Conditions area. Then drag “riskRating” to

the first row of the Actions area (Figure 15).

Figure 15

Now we have the rule, we now need to set the rule condition and Action to set the required Decision

P a g e | 16

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

In Column 1, select “T” (for True / Positive) as the value for the Condition and type in “High Risk” as the

value for the Action. (Figure 16).

Figure 16

For the second rule, drag the “age” attribute to the second row in the Condition area. In Colum two type

in “<35” for the Condition value, and type in “Low Risk” for the action value (Figure 17).

Figure 17

P a g e | 17

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Finally, we need to link the Rule Statements (Business Rule) with the declarative representation

(Condictin and Colum) by typing in the corresponding column number in the Rule Statement section.

If you would like to post the Rule Statement as a message to the request, You can choose to post (info,

Warning or Violation) the Rule Statements as shown (Figure 18).

Figure 18

P a g e | 18

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Now we have the defined the ruleset we need to check for any flaws in the rule model, such as conflicts

and/or incompleteness. This means there maybe rules that overlap, or there maybe a gap in the logic or

there are not enough rules to cover all possible scenarios. Conflicts can be resolved by using overrides,

and incompleteness is handled by adding additional rules as suggested.

Click on each button to see what response you get, it should be something like the 2 screenshots below.

P a g e | 19

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Now we will resolve these rule integrity issues as follows:

1. For the rule conflict, introduce a rule priority override for rule 2 in rule column 1. Skydiving is

dangerous regardless age, so ignoring rule 2 (the age rule) makes sense in this context.

2. For the missing rule (3), add a risk rating of MEDIUM RISK. Also don’t forget to add the missing

rule statement text (Applicants who don’t skydive and are 35 or older have a MEDIUM RISK

rating).

Figure 19: Complete and consistent rulesheet

NB: For simplicity reasons, we have ignored the potential NULL values in rule 3. Corticon will flag the

possibility that your input data may not contain values. Usually this situation is prevented by setting the

Mandatory flag to TRUE in the vocabulary meaning data presence is enforced at service level. This is not

possible with the current level of integration between OE and Corticon. That said, based on customer

input, Progress may relax this restriction in the next version of Corticon.

NOW, be careful! SAVE your rulesheet. This is the only way we can test the rules!

P a g e | 20

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Step 3 – Create Tests

Right click on the Project and select New/Ruletest. Name it Applicant and hit next, You will then choose

the Rulesheet that you want to test against. Select the RiskRating Rulesheet you have just created

(Figure 20).

Figure 20

P a g e | 21

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

You can now drag the Applicant from the Vocabulary area and drop into the Input section. Double click

on the “age” attribute and type in 25. Then double click “isSkydiver” and choose “false”. You can provide

a name to identify this applicant, although it is not necessary for the decision to execute. You may also

delete the other attributes for clarity’s sake if desired (Figure 21).

Figure 21

Once complete, press the “Execute” button to run the test and see the outcome of the decision, as well

as the corresponding Rule Statements for every rule that fired (Figure 22, 23).

Figure 22 Figure 23

P a g e | 22

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Step 4 – Deploy Decision Service

A decision service is a collection of one or more Rulesheets orchestrated in a Ruleflow. To deploy a

decision service, first create a new Ruleflow by right mouse clicking on the project and selecting

New/Ruleflow. Name the Ruleflow NewPolicyProcessing (Figure 24). Next select the Vocabulary to use

for this Ruleflow. Choose the Underwriting.ecore that you created earlier.

Figure 24

Finally, drag the RiskRating.ers Rulesheet (Figure 25) from the Project Explorer on to the Ruleflow canvas

and SAVE, you now have a rule that you can publish to the Corticon Server.

Figure 25

The decision service is completed and ready to be deployed to the Corticon Server.

P a g e | 23

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Start the Corticon Server as follows:

1. Go to the Windows Start Menu  All Programs/Progress/OpenEdge 11.4/Proenv

2. Type in the DOS box: protc start

3. Hit Enter. The Tomcat application Server with Corticon Server will now start up, once running (see

message at the bottom).

You can close the DOS window.

P a g e | 24

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

In OpenEdge Developer Studio, right mouse click on the project and select “Publish”.

Figure 26

Provide the connection details to the Corticon Server you want to publish to (Figure 27).

Figure 27 Figure 28

URL: http://localhost:8980/axis

User: admin

Password: admin

Select the “NewPolicyProcessing” flow and Finish (Figure 28).

http://localhost:8980/axis

P a g e | 25

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

To access the Corticon Server Console and confirm the service is deployed, launch the web browser

from the desktop and go to the URL: http://localhost:8980/axis (there is a shortcut in the menu bar in

Google Chrome).

User: admin

Password: admin

Once logged in you can access the deployed decision services (Figure 29), and see a list of all decisions

and various details. You should see v1.0 of the NewPolicyProcessing service (Figure 30).

Figure 29

http://localhost:8980/axis

P a g e | 26

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 30

Step 5 – Test Deployed Decision Service

OpenEdge Developer Studio allows you to test against remote decision services deployed under

LOCALHOST. If Corticon Server is licensed (and probably “lives” on a separate Server), you’d be able to

test against any defined URL end point.

To do see, return to the Ruletest you created, and update the tested asset. Double click on the file path

of the RiskRating.ers file (Figure 31), choose “Remote Servers”, click the “Update List” button, and select

NewPolicyProcessing in the list (Figure 32).

Now when you execute the test, OpenEdge Developer Studio will create a SOAP message, post it to the

remote URL and display the result payload from the deployed decision service (Figure 33).

P a g e | 27

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 31

Figure 32

Figure 33

P a g e | 28

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Exercise 2 – Integrate Corticon Decision Service
In this exercise we will use the new features of OpenEdge to integrate the deployed decision service

with an existing application. Because the decision service vocabulary was created from existing Temp-

Tables, these can be seamlessly used as the data payload, with no mapping or transformation necessary.

Step 1 – Configure the Environment

Launch Developer Studio for OpenEdge from the desktop, if it is not already running and activate the

OpenEdge Editor perspective. To leverage the built in connectivity with Corticon in OpenEdge you will

need to add one External Directory, and one External Library to your project.

Right mouse click on the “Corticon Business Rules” project and select Properties.

Navigate to Progress OpenEdge\PROPATH .

Click “Add External Library” and select “C:\Progress\OpenEdge\gui\rules\OpenEdge.BusinessRule.pl”

(Figure 34)

Figure 34

P a g e | 29

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Click “Add External Directory” and select “C:\Progress\OpenEdge\gui\rules” (Figure 35)

Figure 35

You should now see the 2 components in the Properties view (Figure 36).

Figure 36

P a g e | 30

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Step 2 – Add “Using” References

In the Project Explorer, double click on SampleApp.cls to bring up the visual editor for the application

form (Figure 37). To view and edit the code associated with the form, right mouse click on the form and

select “View Source”, or press F9 (Figure 38).

Figure 37

Figure 38

P a g e | 31

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

The first step is to add the USING references as shown in Figure 39. The code snippet is provided so you
can copy and paste into your project.

/*Begin code snippet*/
USING OpenEdge.BusinessRules.DecisionService.
USING OpenEdge.BusinessRules.RulesServerConnectionParameters.
USING OpenEdge.BusinessRules.RulesServerConnection.
USING Progress.Json.ObjectModel.JsonObject.
USING Progress.Lang.AppError.
/*End code snippet*/

Figure 39

P a g e | 32

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Step 3 – Add Variable Definitions

Next you will add the reference to the Include files and Variable definitions as show in Figure 40.
The code snippet is provided so you can copy and paste into your project.

/*Begin code snippet*/
{Underwriting.i}
{OpenEdge/BusinessRules/ttRulesMessage.i}

DEFINE VARIABLE oOptions AS JsonObject NO-UNDO.
DEFINE VARIABLE oParams AS RulesServerConnectionParameters NO-UNDO.
DEFINE VARIABLE oConnection AS RulesServerConnection NO-UNDO.
DEFINE VARIABLE decisionService AS DecisionService NO-UNDO.
DEFINE VARIABLE dVersion AS DECIMAL NO-UNDO.
DEFINE VARIABLE cServiceName AS CHARACTER NO-UNDO.

/*End code snippet*/

Figure 40

P a g e | 33

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Step 4 – Add Decision Service Execution Code

In this step you will add the code to execute the decision service when the “Execute” button is clicked.

The code will create a connection to the Corticon Server. It will create a record in the temp-table based

on the values entered in the user interface. It will execute the decision service and the update the form

with the results of the decision (Figure 41).

The code snippet is provided so you can copy and paste into your project.

/*Begin code snippet*/
oOptions = NEW JsonObject().
oOptions:Add ('URL', 'http://localhost:8980').
oParams = NEW RulesServerConnectionParameters(oOptions).
oConnection = NEW RulesServerConnection(oParams).
cServiceName = 'NewPolicyProcessing'.
decisionService = NEW DecisionService(oConnection, cServiceName).

EMPTY TEMP-TABLE Applicant.
CREATE Applicant.
Applicant.age = INTEGER(THIS-OBJECT:txtAge:Text).
Applicant.isSkydiver = LOGICAL(THIS-OBJECT:chkSkydiver:Checked).
decisionService:InvokeService(INPUT-OUTPUT TABLE Applicant BY-REFERENCE).
FIND LAST Applicant.
THIS-OBJECT:txtRiskRating:Text = Applicant.riskRating.

/* get the messages */
decisionService:GetMessages(OUTPUT table RulesMessage).

listBox1:Items:Clear().
FOR EACH RulesMessage:

listBox1:Items:Add(RulesMessage.MessageText).
END.
/*End code snippet*/

Figure 41

Don’t forget to save!

P a g e | 34

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Step 5 – Run OpenEdge Application

Now we will run the application. From Developer Studio, click the Run button and select “Run
As\Progress OpenEdge Application” (Figure 42). This will execute your app at the form will be shown
(Figure 43).

Figure 42

Input values for Name, Age, Skydiver and click the Execute button. Based up the values you provided
you will see output similar to Figure 44. You can change the values and Execute again to get various
answers from the decision.

Figure 43 Figure 44

Congratulations! You have a working OE application integrated with the Corticon rules engine!

P a g e | 35

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Exercise 3 – Update Deployed Decision Service
In this exercise, while leaving the OpenEdge application running, you make a change the decision service

you previously modeled. Once you re-deploy, you will see that for the same input values into the

OpenEdge application you will get a different answer.

The first step is to launch OpenEdge Developer Studio, if it is not already running. Update the rules to

use 30 as the threshold age. Make sure to update the Rule Statements as well (Figure 45).

Don’t forget to save!!

Figure 45

P a g e | 36

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Next, right mouse click on the Project and launch the Publish wizard again. Make sure to check the

“Republish” option to overwrite an existing version (Figure 46).

Figure 46

Finally, click the execute button on your OpenEdge app and see the new results (Figure 47).

Figure 47

As you can see, changing the rules is really easy and you don’t have to touch a single line of OE code!

P a g e | 37

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Bonus activities
If you complete the basic lab exercises before the allotted time, you may wish to look at some addition

examples of functionality.

Exercise 1 – Add new Rulesheets to Ruleflow

The current Ruleflow has only one Rulesheet. Real world decisions have many Rulesheets. Your

Insurance Company has decided to not only assess the Applicant’s risk, but also calculate a monthly

premium for the new policy. Let’s add this calculation to a new rulesheet. Doing it in a new rulesheet

allows us to segregate rules which promote ease of maintenance and re-use of rules in other ruleflows.

In this step, create a new Rulesheet called PolicyPricing. Add 3 new rules that set a policy price amount

for the three different risk levels High Risk, Low Risk, Medium Risk. Note that in the rule statements we

have done some interesting things.

1. We have parameterized the rule statements with actual values passed into the rules engine as

well as output calculated values. Just drag and drop them from the vocabulary into the rule

statement.

2. One rule statement refers to multiple rules using a rule range in the Ref field. You can also refer

to individual rules using the comma separator (depending on your locale).

Figure 48

P a g e | 38

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

You can then add this Rulesheet to your existing NewPolicyProcessing Ruleflow and link the steps

together. Now your decision service not only calculates a risk rating, but it also determines the policy

price as well. If you make a few adjustments to your OE app, the new policy price will be displayed in the

screen (Figure 49).

Figure 49

P a g e | 39

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Exercise 2 – Consuming the Decision Service with soapUI

Your company has asked you to integrate the NewPolicyProcessing decision service with another

business application. In this non OE application, you’d like to use the SOAP web services protocol to

send data to Corticon and parse the response. You’ll need to make sure that Corticon accepts your SOAP

message and you’d like to test this before the actual integration effort. You have selected soapUI, an

open source utility, to do your testing. You have already downloaded and installed the free Eclipse

plugin into Progress Developer Studio.

soapUI requires an integration artifact (WSDL) which details the decision service specifications. The

Corticon Deployment Console (normally installed with a full, standalone Corticon Server installation) has

the ability to create this for you. So let’s get started!

Please follow these steps:

1. Open the Corticon Deployment Console. Go to Start Menu  All Programs  Progress 

Corticon 5.4  Deployment Console.

2. Refer to Figure 50 below. Enter in the upper pane (Decision Services Deployment Properties) the

decision service name and ruleflow path ("C:\OpenEdge\Workspace\Risk Rating

Rules\Ruleflows\NewPolicyProcessing.erf"). In the lower pane (Service Contract Specification):

a. select “Vocabulary Level” - we’ll create a generic WSDL for any ruleflow pointing to the

used vocabulary

b. select the Work Document Entity – the driving entity for our service

c. select Type WSDL in the drop down (XML schema file or XSD is not used in this exercise)

d. make sure the URL is pointing to http://localhost:8980/axis

e. Hit the Generate Service Contracts button and place the file on your desktop

P a g e | 40

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 50: Corticon Deployment Console

3. Open the generated

WSDL on your desktop

with NotePad++ (just

double click it). Insert the

proper decision service

name at the end and

save the file.

4. Open the soapUI perspective in Progress Developer Studio.

5. Create a new soapUI project by right mouse clicking on Projects in the

soapUI pane.

Figure 51: WSDL file - insertion of decision service name

P a g e | 41

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Enter the Project Name and Initial WSDL file link and press OK. Open the Request1 in the tree structure

in the left pane (double click Request1). The request payload will open. As you can see, some of inputs

are missing.

Figure 52: soapUI - decision service invocation

6. Instead of filling in the “?” or wiping them out,

let’s create the payload in Corticon Studio and

copy it into soapUI. Reopen your Corticon

Designer perspective and make sure that your

test subject point to the Corticon Server end

point.

P a g e | 42

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

7. Export the Request SOAP message by saving

it to your Desktop. See Figure 53.

8. Open the SOAP Request with Notepad ++

and add the correct decision service name,

and save. Copy the content of the entire

message into the request message pane of

soapUI. Effectively replacing the sample

message generated by soapUI.

9. Launch the request by hitting the green

button in the request pane. Did you see

results like in Figure 54?

Figure 54: Results from invoking a decision service in soapUI

Note 1: Corticon Server returns two objects: the WorkDocuments and Messages. Both can be used to

do all sorts of things (persist the data, display data in a screen, display the rule trace in a screen).

Note 2: soapUI can be used to perform web services testing. But also for load/performance testing it is a

great tool.

Figure 53: Exporting the request message

P a g e | 43

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Exercise 3 – Configure Server Console for Monitoring

Your management has requested better insight in the decisions being taken by the rule server. Corticon

Server is able to monitor the values that are passing through the engine or being generated as the result

of rules processing. All these statistics can be requested by API for integration with backend monitoring

tools or business intelligence solutions. But the information is also displayed in the Corticon Server

console!

Click “Configure Rules Server” icon from toolbar. Ensure all options are “Yes” under Decision Service

Options (Figure 55). Go to list of Decision Services and select NewPolicyProcessing. Drill down to Service

Configuration and add Applicant.riskRating as a Monitored Attribute (Figure 56). For all future

executions of this service, Corticon will capture statistics for the attribute that you can review (figure 57,

58).

Figure 55

P a g e | 44

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 56

Figure 57

P a g e | 45

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 58

Feel free to insert other monitoring attributes.

P a g e | 46

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Exercise 4 – Use Code Macros

Coding the integration code in Progress Developer Studio requires work. To minimize the coding effort,

Progress made a number of macros available. There are 3 default macros provided to assist with code

insertion.

1. BR-CONNECT

2. BR-GETMSG

3. BR-INVOKE

The templates for these are editable and found in System Preferences (Figure 59). You can experiment

using these macros to automatically insert the code that you copy/pasted in the previous exercise.

P a g e | 47

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 59

Tip: For non OE developers, just reset your perspective to OpenEdge Editor. Revisit the SampleApp.cls by

going to the code window (remember F9). Type the macro name followed by a spaces, and the macro

will auto-generate all the template code for you.

Exercise 5 – Externalize to Standalone.p file
Instead of putting all of the decision service execution code in the Form definition, you can place it in a

standalone.p file and then execute that .p file from the Form code. This could be helpful if you want to

re-use this code from many locations.

Exercise 6 – Deploy Multiple Versions
Corticon supports deployment of multiple versions of the same decision service. In practice, most

organizations need this. This feature supports back dating or future dating of decision services. For

example it helps conducting “what if” exercises like “What if we run against a previous or future version

of a decision service?” Multiple version of the same decision service can “live”in Corticon Server. The

invocation request payload parameters provide the necessary data to Corticon Server to automatically

run the correct version against the request payload.

P a g e | 48

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 60: Version and date parameters in the request payload

Your ABL code also supports these decision service invocation parameters.

P a g e | 49

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

To create a new version, navigate to the Properties panel for the Ruleflow (Figure 60). Update the Major

Version to 2 and save the Ruleflow. Now when you publish the Ruleflow, you will see two versions

deployed on the Corticon Server (Figure 61).

Figure 61

P a g e | 50

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 62

Exercise 7 – Deploy with Effective Dates
Corticon also support effective dates for versions. This means you can specify for what date ranges a

certain version is applicable. Navigate to the properties for the Ruleflow and specify a start and stop

date/time (Figure 62). Re-publish the decision service, and you will see that there are now effective

dates for the decision service (Figure 63).

Note: The date settings in Progress Developer Studio – perspective Corticon Studio are set to US date

format (MM/DD/YY). This can be changed in the Corticon configuration settings when the software is

installed. We hope you don’t mind we left it to a US setting?

P a g e | 51

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 63

P a g e | 52

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Figure 64

P a g e | 53

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Exercise 8 – Dynamic Database Integration with Corticon Enterprise Data Connector

Corticon Enterprise Data Connector (EDC) provides a way for your Corticon Rulesheets to dynamically

interact with external data sources during rule execution. Corticon EDC can act in Read-only mode

where it is used to enrich the data provided in a request message when a Corticon decision service is

invoked, as required in order to evaluate the rules that make up the decision service, but no data is

updated in the external datasource and all data is returned the calling application in the response

message including all data that was retrieved from an external data source and all changes to any data

that were performed by the decision service. Corticon EDC can also be used in Read-Write mode which

enables not only dynamic data enrichment, but also for updates to data made by the rule actions within

a decision service to be dynamically updated in an external data source. Corticon EDC can also assist

with the creation of an appropriate external data source schema to correspond with a Corticon

vocabulary, should no suitable schema already exist, and in some situations can auto-map existing

relational schema against existing vocabulary entities and attributes.

In this exercise you will:

1. enable EDC in your Progress Developer Studio environment

2. configure a connection from an Corticon vocabulary to an OpenEdge database

3. configure the persistence properties of your vocabulary’s entity and attributes

4. have EDC create a new table in the Sports2000 sample OpenEdge database to represent the

Applicant entity in the RiskRating Corticon vocabulary

5. populate that Applicant table with some test data

6. run TestSheets to show Read-only and Read-Write mode EDC behavior

7. configure a RuleSheet to enable batch execution

8. run TestSheets to show batch execution of a RuleSheet in Read-only & Read-Write modes

We will use the Risk Rating Rules EDC project for this Exercise. Now would be a good time to close other

files and open that project in Progress Developer Studio.

1. To enable EDC in your Progress Developer Studio environment select Preferences from the

Window menu, then select Progress Corticon->Rule modeling in the resulting dialog. You will see

User Role options. Change the User role from Rule Modeling to Integration and Deployment:

P a g e | 54

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

You can now confirm that you have access to the Corticon EDC functionality by opening the

applicantEDC.ecore vocabulary and clicking on the root level node of the vocabulary. If EDC is enabled

you will see an additional Database Access tab to the right of the Custom Data Types tab:

Note that Corticon EDC is a separately licensed product capability, so you also have to specify a license

file that includes the EDC feature in order to see the above Database Access tab in Progress Developer

Studio. All evaluation licenses for Corticon Studio include the EDC feature. Corticon Server evaluation

licenses do not include EDC by default, so if you request an evaluation license to test EDC functionality

be sure that your Progress rep or SE is aware that you need access to that functionality.

P a g e | 55

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

2. In order to configure a connection from an Corticon vocabulary to an OpenEdge database you

need to first start the OE Database by going to the command line and type in “preserve

sports2000 –S 2001

Next we open the Risk Rating Rules EDC project and open the UnderwritingEDC.ecore

vocabulary. Select the root node of the vocabulary and select the Database Access tab.

Configure a database connection as follows:

- Select Progress OpenEdge 11.3 from the Database Server dropdown.

- In the Database URL replace the <server> with localhost

- In the Database URL change the port number to 2001

- In the Database URL change the database name to sports2000

- Specify your windows username (for this workshop VM: administrator)

- Specify your windows password (for this workshop VM: ApjPug2015)

Click the ‘Test Connection’ button. If you have any connection problems ask an instructor for assistance.

P a g e | 56

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

If we wanted to map our vocabulary’s entities and attributes to existing tables and columns in the

database we would now import a local copy of the database schema metadata which enables Corticon

to attempt some name-based automatic mapping, and simplifies manual mapping by populating

dropdown selections with valid table and column names. This step is not necessary for this lab, but if

you do want to import the database metadata, select Database Access -> Import Database Metadata

from the Vocabulary menu.

3. Next let’s configure the persistence properties of your vocabulary’s entity and attributes.

Select the Applicant node in your vocabulary and then:

 Change the value of the Datastore Persistent property to Yes.

 Set the TableName property to your desired tablename. For this lab specify EDC_APPLICANT to

avoid having to edit the loadEDCTestData.sql script that we will use later.

 Select which attribute of Applicant will act as it primary key identifier. Select name for this lab.

Normally you would select a unique ID attribute of each entity to be enriched or persisted.

Before we instruct Corticon to create the new table in the OE database, let’s open the DB Navigator

perspective in Progress Developer Studio, and double click the Sports2000 Connection Profile to enable

an active connection to the Sports2000 database.

P a g e | 57

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Then in the DB Structure tab you can expand Database->SPORTS2000->TABLE to see the list of tables.

Click on a table to see it’s properties and preview its data in the DB Details tab. If you want to run some

exploratory queries against the database you can right click on Sports2000 in the Active Connection list

and select ‘New SQL Editor’. At this stage there is no EDC_APPLICANT table in the sports2000 DB

corresponding with our vocabulary’s Applicant entity.

4. To perform the table creation from the Vocabulary menu select Database Access ->

Create/Update Database Schema. In the DB Navigator perspective, right click on the TABLE node

of the DB Structure tab and select Refresh to see that the new table has been created to hold

applicant data (you might need to click on the active connection in order to get the DB Structure

tab to repopulate).

5. Now we have created the table we need to populate that table with some sample data. To do

this go to the DB Navigator perspective, right click on the Sports2000 Active Connection and

select New SQL Editor. Then in the SQL Editor window select the folder icon to open a file

selector dialog and select the loadEDCTestData.sql file from the Ruletest folder of the Risk

Rating Rules EDC Project in your workspace. Then click the green and white run arrow to

execute the SQL script. Assuming you named your table correctly and configured your

vocabulary to connect to the database using the DBA1 user, this script should create 4 Applicant

records in the new table. Again you can use the DB Navigator view to confirm. Select the table

DBA1.EDC_APPLICANT in the DB Structure tab and then select Preview tab in the DB Details

area. You should see output like this:

P a g e | 58

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

6. In order to run TestSheets to show Read-only and Read-Write mode EDC behavior of the

RiskRatingEDC.ers RuleSheet, open the RiskRatingEDC.ert Ruletest. There are five TestSheets in

this RuleTest: Non-EDC, EDC Read-Only, EDC Read-Write, Batch EDC Read-Only and Batch EDC

Read-Write. The Read-Only/Read-Write mode of operation is set for each TestSheet from the

RuleTest menu, select TestSheet->DatabaseAccess. For now let’s run the first three TestSheets

in that order:

 The Non-EDC TestSheet requires all input data (age, isSkydiver, name) to be input in the test

case.

 The EDC Read-Only TestSheet also contains 4 test cases, but only passes the name, which you

will recall is defined as the primary key of the table we created in the database to store

applicant data – yet this TestSheet gets the same output showing that Corticon EDC is

dynamically pulling in the required data from the database. However, if we Preview the values

in the DBA1.EDC_APPLICANT table again we will see no RISKRATING values have been updated

in the database.

P a g e | 59

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

 The EDC Read-Write TestSheet contains the same seed data in four test cases as the EDC Read-

only TestSheet, but if you Preview the DBA1.EDC_APPLICANT table after executing the EDC

Read-Write TestSheet you will see that the RISKRATING values have been updated in the

database table as well as being returned to and output by the RuleTest.

P a g e | 60

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

In some situations it can be useful to configure a RuleSheet to enable batch execution. This means that

no primary key seed data is required in the request message when executing a decision service. Before

we update the RuleSheet to support batch mode operation try running the two Batch TestSheets to see

that no output is produced.

To enable batch execution the root entity of your RuleSheet (or of the first RuleSheet in a RuleFlow)

needs to be ‘extended to the database’. To do this expand the RiskRatingEDC.ers RuleSheet to its

Advanced View (from the Rulesheet menu select Advanced View) so you can see the Scope and

Filter/Precondition areas. Right click on the root entity in the scope section and select Extend to

Database. Save the Rulesheet.

P a g e | 61

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

7. In order to run TestSheets to show batch execution of a RuleSheet in Read-only & Read-Write

modes (re)open the RiskRatingEDC.ert Ruletest. Before we proceed, let’s reset the test data in

our database table by running the resetEDCTestData.sql script in the Vocabularies directory.

Now let’s run the Batch EDC Read-Only and Batch EDC Read-Write TestSheets:

 Note that the Batch EDC Read-Only TestSheet contains NO input test cases – yet when we run

this TestSheet we get the same output showing that Corticon EDC is dynamically pulling in the

required data from the database. However, if we Preview the values in the

DBA1.EDC_APPLICANT table again we will see no RISKRATING values have been updated in the

database.

P a g e | 62

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

 The Batch EDC Read-Write TestSheet contains ONE partial input test case, yet when it is

executed it still produces 4 output records. This shows that input request data can be combined

with batch mode execution, and that input request data will override and overwrite data stored

in the database. So, the partial test case for John specifies him to NOT be a skydiver (unlike the

pre-populated test data stored in the database) but if you Preview the DBA1.EDC_APPLICANT

table after executing the EDC Batch Read-Write TestSheet you will see that John’s skydiver

P a g e | 63

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

status has been updated to false, and also that all four records’ RISKRATING values have been

updated in the database table as well as being returned to and output by the RuleTest.

Corticon EDC can also connect to several other external datasources: Oracle 10/11, SQL Server

2005/2008/2012, IBM DB2, OpenEdge v10.2 (as well as v11.3), and can also connect to non-relational

data sources (Rollbase and SalesForce.com) using the relational abstraction and connectivity of those

data sources provided by the DataDirect Cloud JDBC Driver.

P a g e | 64

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Conclusion
This concludes this workshop. We hoped you enjoyed it. Due to the limited time, we only scratched the

surface of what is possible with Corticon for OpenEdge.

What to do next?

If you’d like to learn more about Corticon have a look at the Corticon YouTube channel for some great

technical videos: http://www.youtube.com/playlist?list=PLC679RvCan2AFmzCof-8KZV0Mx8WpeE9L

Further learning? Note there are e-learning courses available on the Progress Education Community.

Within 3 days, we’ll teach to create the most sophisticated Corticon rule models through the following

courses:

1. Introduction to Decision Modeling with Progress Corticon Studio

This course is an introductory course for Corticon. It provides an overview of Business Rule

Modeling Systems (BRMS), their purpose and value, and the function of the different

components of Progress Corticon. It teaches how to write and test business rules using Progress

Corticon Studio and covers the basic concepts of creating Vocabularies, defining rules in

Rulesheets, testing rules using Ruletests, and creating Ruleflows.

http://www.youtube.com/playlist?list=PLC679RvCan2AFmzCof-8KZV0Mx8WpeE9L

P a g e | 65

© 2014 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

2. Advanced Decision Modeling with Progress Corticon Studio

This course focuses on advanced features in Corticon Studio. It begins with a review of the following

rule modeling components—Vocabulary, Rulesheet, Ruletest, and Ruleflow. You learn about

Vocabulary features such as Custom Data Types and Domains. You learn about Rulesheet features

such as Scope, Aliases, Collections, Filters, Dependency, and Looping. You then learn about the

following Ruleflow features—Subflows, Iteration, and Service Call-outs. Finally, you learn about

Ruletest features such as Annotations, generating data trees, and testing multiple Ruleflows from a

single Ruletest.

3. Using Corticon Business Rules in a Progress OpenEdge Application

In this course, you will learn how to use Corticon’s business rules in an OpenEdge application. First

you will learn how to set up an integrated development environment that contains OpenEdge and

Corticon. Then you will learn how to export a Business Rules Vocabulary Definition from an

OpenEdge application. Finally you will learn how to use a Corticon decision service from an

OpenEdge application.

After taking this class, you should be able to:

 Set up an integrated environment that contains Corticon and OpenEdge

 Export a Business Rules Vocabulary Definition file from an OpenEdge application

 Use a Corticon decision service from an OpenEdge application

Lastly, talk to your Progress Account manager

to get your rules projects going!

